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Abstract

Elliptic curve cryptography involves numerous scalar multiplications, incurring high opera-
tional costs. In view of this, fast endomorphism is used to represent scalar multiplications, kP
on elliptic curves. In the past, techniques such as Gallant-Lambert-Vanstone (GLV) method and
Integer Sub-Decomposition (ISD)method have been proposed to reduce the cost of scalarmulti-
plication on elliptic curves byusing fast endomorphism. TheGLVmethod employs a single-layer
decomposition, breaking k into k1 and k2, while the ISD method uses a bilayer decomposition.
The existence of fast endomorphisms which are constructed based on the concept of isogeny
increase the computational efficiency of the GLV approach and reduce the operation count on
the ISD method. This paper embeds the fast endomorphisms in the scalar multiplications on
one of the family of elliptic curves with j-invariant 0, E0, which is the 192-bit Koblitz curve
(Secp192k1). The performance of the ISD method in computing certain scalar multiplications
on Secp192k1 in conjunction with fast endomorphisms and other various techniques such as
binary representation, NAF representation, w-NAF and sliding windows are computed. The
results demonstrated that the ISD method together with fast endomorphism, yields the most
promising outcomes. This underscores the advantages of using fast endomorphisms in the ISD
method on E0.

Keywords: elliptic curve scalar multiplication; fast endomorphism; GLV method; ISD method;
Secp192k1.
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1 Introduction

Cryptography is a platform that provides confidentiality, integrity, authentication and disal-
lows repudiation during communication between two parties in a public network. There are two
types of cryptography which are symmetric cryptography and asymmetric cryptography or also
known as Public KeyCryptosystems (PKC). Among examples of popular andwidespread utilized
PKC is the Elliptic Curve Cryptosystem (ECC).

ECC is a cryptosystemwhich is based on a chosen elliptic curve,E and its security relies on the
algebraic structure of the curve since it was first introduced byMiller [18] in 1985 and Koblitz [14]
in 1987. E can be categorized according to its characteristic field, char(K). When char(K) ̸= 2, 3,
the elliptic curve is known as the ordinary elliptic curve which has the form of

E(K) : y2 = x3 +Ax+B,

where A,B ∈ Fp and 4A3+16B2 ̸= 0 [19, 21]. One of the algebraic structures of an elliptic curves
is its points form a group. This group of points has an order#E(Fp) = nh, where h is the cofactor
with h ≤ 4 for cryptographic use, and n is the order of the largest prime subgroup. The largest
prime subgroup consists of points that form an abelian group, known as the maximal order.

Apart from that, the algebraic structures of an elliptic curve help to classify the family of elliptic
curves. Another important algebraic structures of an elliptic curve is its j-invariant, defined by

j(E) = 1728

(
4A3

4A3 + 27B2

)
.

The j-invariant of elliptic curve helps to distinguish the isomorphism that exists between two
curves. Two elliptic curves,E1 andE2 have the same algebraic structures whenever j(E1) = j(E2)
and are isomorphic to each other. One of the type of the family of elliptic curves is E0, the elliptic
curve with j-invariant 0.

The complexity of solving the discrete logarithm problem (DLP) attributes to the security of
ECC, which requires finding scalar k such that Q = kP where Q is the public key, P is the pa-
rameter that has been agreed upon by both parties and k is the secret key. The parameters P and
Q refer to points on an elliptic curve belonging to the prime subgroup of order n, while k is the
private key such that k ∈ [1, n]. It is difficult to compute k when P and Q are given. Meanwhile,
the process of computingQ = kP is easy and it is called the scalar multiplication of elliptic curves,
which is known as the most expensive operation in elliptic curve.

There are a few approaches to compute kP where they forced on improving the numeric ex-
pansion of k [4]. One of the approaches is by encoding k into binary formwhich consists of {0, 1}.
Other than encoding k into a binary representation, k can also be encoded into other forms such
as non-adjacent form (NAF) [13]. This approach reduces the computational time as it considers
the subtraction of points. The NAF-representation consists of {0, 1,−1}, where no two non-zero
digits are adjacent to each other. Another approach is to represent k using thewidth-wNAF repre-
sentation [13]. The width-NAF is an extension of NAF representation which involves processing
w digits from the integer k at each step. Additionally, a sliding window technique can be applied
to the NAF representation of k. It ensures that the value in the window is always odd, thereby
minimizing precomputation for the algorithm. However, the operation cost by using encoding ap-
proach will increase when one dealing with a bigger prime field and hence reduces the efficiency
of ECC.
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Besides encoding k into other representations, endomorphisms can be used to compute kP .
An endomorphism is a homomorphism defined by

Φ(P ) = Φ(x, y) = (f1(x, y), f2(x, y)) = (x′, y′) = Q,

where P,Q ∈ E. It acts as a catalyst to jump the computation from P to λP , where λ is the value
obtained from the endomorphism. However, to compute kP for any scalar k, the endomorphism’s
approach still needs to be combined with other encoding approaches.

One of the methods which combine these two approaches is the Gallant-Lambert-Vanstone
(GLV) method. Instead of computing kP directly, they suggested to compute shorter scalars k1
and k2 which are obtained from k by using fast endomorphisms. The computational cost is re-
duced by 50% as long k1 and k2 satisfy the GLV condition where max{|k1|, |k2|} ≤

√
n [12, 8]. By

satisfying this condition, the bitlength of k is reduced to half [20]. However, not all decomposed
scalars k1, k2 can satisfy the condition.

To further reduce this computational cost, the GLVmethod is extended into higher dimensions
and applied on a larger field such as Fp2 [10]. In 2009, Galbraith et al. [11] proposed a Frobenius
endomorphism as their fast endomorphism that applied on Fp2 . Their method, known as the
Galbraith-Lin-Scott (GLS) approach, reduces the computational time of scalar multiplication by
16% to 30% as compared to scalar multiplication without using fast endomorphism. Based on this
idea, Zhou et al. [23] proposed a higher dimension of GLV-GLS approach on a certain family of
the elliptic curve, namely elliptic curves with j-invariant 0, E0. They applied their method on E0

defined over 128-bit prime p. Their method accelerated the computation by 10.3% as compared to
the GLS approach. Later in 2012, Longa and Sica proposed a four-dimensional GLV-GLS approach
[17]. In 2013, Bos et al. [7] came upwith the idea of eight dimensional GLV-GLS decomposition to
further accelerate the computation. In 2018, Kwon et al. [16] implemented the four dimensional
GLV-GLS approach into several microcontrollers.

However, all these GLV variants need to satisfy the same GLV condition. In contrast to this
GLV condition, Ajeena and Kamarulhaili proposed to further decompose scalars k1 and k2 into
k1,1, k1,2, k2,1 and k2,2 in their Integer Sub-Decomposition (ISD) method by using another two
endomorphisms [1, 2, 3]. They choose a randomλ ∈ [1, n−1] to define their trivial endomorphism,
Φ(P ) = λP , instead of using fast endomorphisms [22]. As a result, their method is less efficient
especially when a bigger λ is chosen or when an elliptic curve is defined over a large prime field,
as λP needs to be computed by an encoding approach.

Our Contribution. Using the algebraic structures of an elliptic curve, this study puts forward
fast endomorphisms defined on a family of elliptic curveswith j-invariant 0,E0. These constructed
endomorphisms can be applied in any scalar decomposition method, especially the ISD method,
to further accelerate the computation. Based on the constructed endomorphisms, we compute the
computational time for each defined scalar multiplications by using various encoding approaches
and also fast endomorphisms. To highlight the significance of this work, we present the algorithm
for the naive ISD method and the algorithm for the ISD method with the defined constructed
endomorphisms on Koblitz curves with 192-bit, as stated by Standards for Efficient Cryptography
[6]. Then, we compared the computational time taken by the ISDmethod using various encoding
approaches and also by using fast endomorphism. Based on our result, the existence of additional
fast endomorphisms accelerates the computation of λP by 99%. Through our computations using
the ISD method on Secp192k1, we observe that the existence of fast endomorphisms enhance the
computation speed by 15%.
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Outline of This Paper. This paper is divided into eight sections. Section 1 gives some intro-
ductions to elliptic curve cryptography. This section also discusses some previousworks in elliptic
curve scalar multiplication. Section 2 explains the encoding process of scalar k into a binary form
and NAF representation. This section also discusses various processes of point multiplication by
using these two representations as fundamental frameworks. Section 3 explains themechanism of
the GLV and ISD methods where we presented the algorithm for the ISD method. Section 4 gives
some descriptions of elliptic curves with j-invariant 0, E0. Section 5 discusses the implementation
of fast endomorphism on Secp192k1. Section 6 gives the analysis of the result which includes the
computational time taken by the naive ISD method and the improved ISD method on Secp192k1.
Section 7 and Section 8 provide the discussion and conclusion, respectively.

2 Encoding Scalar k

As indicated in Section 1, the scalar k can be encoded into binary form and the scalar multi-
plication kP can be accomplished by using the Right-to-Left algorithm, which is detailed in the
following Algorithm 1:

Algorithm 1 : Right-to-Left algorithm for point multiplication [13].
Require: P ∈ E(Fp), k = (k(ℓ−1), · · · , k1, k0)2.
Ensure: kP .
1 : Q← OE for i← 0 to ℓ− 1 do
2 : If ki = 1, then Q← Q+ P .
3 : Else: P ← 2P .
4 : Return Q.

The amount of addition and doubling operations required is determined by the Hamming
weight w and the bit length ℓ from the binary form of k.

Other than that, one can also represent k in NAF-representation as written in the following
Algorithm 2:

Algorithm 2 : Computing NAF(k) [13].
Require: A positive integer k.
Ensure: k = (k(i−1), · · · , k1, k0).
1 : i← 0.
2 : While k ≥ 1 do
2.1 : If k odd, then: ki ← 2− k (mod 4); k ← k − ki.
2.2 : Else: ki ← 0.
3 : k ← k

2 , i← i+ 1.
4 : Return: (k(i−1), · · · , k1, k0).

The NAF-representation can be used to compute kP . The following Algorithm 3 explains the
computation of kP using NAF-representation.
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Algorithm 3 : Point multiplication using NAF-representation of positive integer k [13].
Require: A positive integer k, P = (x, y) in E(Fp).
Ensure: Q = kP .
1 : Use Algorithm 2 to compute NAF(k).
2 : Q←∞, −P = (x,−y).
3 : For i← ℓ− 1 to 0 do
4 : Q← 2Q, −P = (x,−y).
4.1 : If ki = 1, then: Q← Q+ P .
4.2 : If ki = −1, then: Q← Q− P .
5 : Return: (Q).

Besides using the NAF-representation, an alternative approach is to represent the integer k
using the width-w NAF-representation, as shown in Algorithm 4. It involves processing w digits
of the integer k at each step which leading to a reduction in the overall execution time.

Algorithm 4 : Computing width-w NAF(k) [13].
Require: A positive integer k, width of the window w.
Ensure: k = (k(i−1), · · · , k1, k0).
1 : i← 0.
2 : While k ≥ 1 do
2.1 : If k odd, then: ki ← k mod 2w; k ← k − ki.
2.2 : Else: ki ← 0.
3 : k ← k

2 , i← i+ 1.
4 : Return: (k(i−1), · · · , k1, k0).

The following Algorithm 5 provides a step-by-step explanation of how to calculate kP using
the width-w NAF-representation.

Algorithm 5 : Point multiplication with width-w NAF-representation of positive integer k [13].
Require: A positive integer k, P = (x, y) in E(Fp), width of the window w.
Ensure: Q = kP .
1 : Use Algorithm 4 to compute width-w NAF(k).
2 : Compute Pj = jP for j ∈

{
1, 3, · · · , 2w−1 − 1

}
.

3 : Q←∞.
4 : For i← ℓ− 1 to 0 do
4.1 : Q← 2Q.
4.2 : If ki ̸= 0, then: Q← Q− P .
4.2.1 : If ki > 0, then: Q← Q+ Pki .
4.2.2 : Else: Q← Q− P−ki .
5 : Return: (Q).

Asmentioned in [13] andAlgorithm 4, it is proposed to employ a slidingwindow technique on
the NAF-representation of the integer k. The window is strategically positioned to guarantee that
the value in the window always odd. This arrangement reduces the amount of precomputation
needed for the algorithm. In consideration of the need for enhanced efficiency and performance
in scalar multiplication algorithms, [15] introduces an optimizedmethod for scalar multiplication
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that utilizes the sliding window technique in conjunction with the 1’s complement approach. The
following Algorithm 6 outlines the procedure for the corresponding method.

Algorithm 6 : Optimized sliding window method for point multiplication [15].
Require: A positive integer k, P = (x, y) in E(Fp), width of the window w.
Ensure: Q = kP .
1 : k = (k(ℓ−1), · · · , k1, k0)2.
2 : Q←∞, i = ℓ− 1.
3 : While i > 0 do
3.1 : If ki = 0, then: Q← 2Q, i← i− 1.
3.1.1 : Else: S = max(i− w1, 0).
3.1.1.1 : While kS = 0 do
3.1.1.2 : S = S + 1.
3.1.2 : For h = 1 to i− S + 1 do
3.1.2.1 : Q← 2Q.
3.1.3 : u = (ki, . . . , kS)2 for ki = kS = 1 and i− S + 1 ≤ w.
3.1.4 : Q← Q+ [u]P .
3.1.5 : i = S − 1.
3.1.6 : Return: (Q).

3 The Scalar Decomposition Method

As mentioned in Section 1, other than encoding the scalar k into some representations to com-
pute scalar multiplication kP , one can directly use the fast endomorphism to accelerate the com-
putation. In this case, the scalar is decomposed into a few sub-scalars with the help of fast endo-
morphism. One of the proposedmethods was the GLVmethod. The structure of the GLVmethod
is shown in the following figure.

kP

k1P k2Φ (P ) = k2λP

Figure 1: GLV method.

As shown in Figure 1, k is decomposed into k1 and k2 with the help of endomorphismΦ, where
Φ(P ) = λP . Consider that k has n-bit, then its decomposed scalars will have

√
n-bit. If the decom-

posed scalars have bit length more than
√
n, the GLV method is inefficient as the computational

time using this approach will be greater than computing kP using an encoding approach.

To overcome this problem, the ISD method was proposed. The mechanism is shown in the
following figure:
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kP

k1P k2Φ (P ) = k2λP

k1,1P k1,2Φ1 (P ) = k1,2λ1P k2,1P k2,2Φ2 (P ) = k2,2λ2P

Figure 2: ISD method.

As shown in Figure 2, the ISDmethod involves two layers of decomposition. In thismethod, the
scalar k is decomposed into k1,1, k1,2, k2,1 and k2,2 with the help of three endomorphisms, which
are denoted byΦ,Φ1 andΦ2. These endomorphisms correspond to λP, λ1P and λ2P , respectively.
However, the ISDmethod did not use the fast endomorphisms. They used trivial endomorphisms
in the form of Φi(P ) = λiP , where λi was chosen randomly from [1, n − 1]. This causes their
method to consume high computational cost as the scalar multiplication λiP is computed using
an encoding approach. Other than that, the method will be more inefficient if one chooses bigger
λi. Algorithms 7 and 8 below outline the procedure for the corresponding method. The scalar
multiplication using ISD method with naive method (Algorithm 1) is presented by Algorithm 9.

Algorithm 7 : Find the vector V with decomposed scalar components.
Require: An order of subgroup n, λ, a scalar k, choice.
Ensure: V = (k1, k2).
1 : Use Euclidean Algorithm [13] to find the biggest remainder which is less than

√
n.

1.1 : rm+1 ← biggest remainder.
1.2 : rm ← remainder before rm+1.
1.3 : rm+2 ← remainder after rm+1.
2 : Use Extended Euclidean Algorithm [13] to find the corresponding tm, tm+1, tm+2.
2.1 : v1 ← (rm+1,−tm+1).
2.2 : v2 ← (rm,−tm).
2.3 : v3 ← (rm+2,−tm+2).
3 : If k < 0, then: k ≡ kλ (mod n).
4 : If choice = 1, then: V1 ← v1 and V2 ← v3.
4.1 : c1 ←

⌊
− tm+2

n k
⌉
, c2 ←

⌊
tm+1

n k
⌉
.

4.1.1 : Compute c1 · V1 and c2 · V2.
4.2 : Else: V1 ← v1 and V2 ← v2.
4.2.1 : c1 ←

⌊
− tm

n k
⌉
, c2 ←

⌊
tm+1

n k
⌉
.

5 : V ← (k, 0)− (c1V1 + c2V2).
6 : Return: (V ).
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Algorithm 8 : Find the decomposed scalar k1,1, k1,2, k2,1, k2,2 .
Require: An order of subgroup n, a set of λ = {λ1,1, λ1,2, λ2,1, λ2,2}, a set of k = {k1, k2}, λchoice.
Ensure: k1,1, k1,2, k2,1 and k2,2.
1 : Use Algorithm 7 to compute V1 and V2.
1.1 : If λchoice = λ1,1 and λ2,1, then: compute vector V1 using k1 and λ1,1.
1.1.1 : Compute vector V2 using k2 and λ2,1.
1.2 : Else If λchoice = λ1,1 and λ2,2, then: compute vector V1 using k1 and λ1,1.
1.2.1 : Compute vector V2 using k2 and λ2,2.
1.3 : Else If λchoice = λ1,2 and λ2,1, then: compute vector V1 using k1 and λ1,2.
1.3.1 : Compute vector V2 using k2 and λ2,1.
1.4 : Else If λchoice = λ1,2 and λ2,2, then: compute vector V1 using k1 and λ1,2.
1.4.1 : Compute vector V2 using k2 and λ2,2.
2 : (k1,1, k1,2)← V1 and (k2,1, k2,2)← V2.
3 : Return: (V1, V2).

Algorithm 9 : Scalar Multiplication with naive ISD method.
Require: E(Fp), P = (x, y) in E(Fp), n, a set of choosen λ = {λ1,1, λ1,2, λ2,1, λ2,2}, a set of
k = {k1, k2}.

Ensure: Q = kP .
1 : Use Algorithm 8 to find k1,1, k1,2, k2,1, k2,2.
2 : Use Algorithm 1 to compute Φ(P ) and scalar multiplication and additions.
2.1 : If λchoice = λ1,1 and λ2,1, then: Φ1(P )← λ1,1P and Φ2(P )← λ2,1P .
2.2 : Else If λchoice = λ1,1 and λ2,2, then: Φ1(P )← λ1,1P and Φ2(P )← λ2,2P .
2.3 : Else If λchoice = λ1,2 and λ2,1, then: Φ1(P )← λ1,2P and Φ2(P )← λ2,1P .
2.4 : Else If λchoice = λ1,2 and λ2,2, then: Φ1(P )← λ1,2P and Φ2(P )← λ2,2P .
2.5 : Addition1← k1,1P + k1,2Φ1(P ).
2.6 : Addition2← Addition1+ k2,1P .
2.7 : Addition3← Addition2+ k2,2Φ2(P ).
3 : Return: (Addition3).

Note that we can replace the Step 2 in Algorithm 9 with any algorithm discussed in Section 2.
The efficiency of each approach, when combined with the ISD method is evaluated in Section 6
for both smaller and larger fields.

4 Family of Elliptic Curves with j-invariant 0

E0 is a curve defined over a field K = Q(
√
−3) with discriminant of quadratic field D = −3

[9] that has the form of
E0 : y2 = x3 +B.

The ring ofmaximal order that exists in this quadratic field consists of algebraic integerswhich can
be written as a linear combination of its basis, {1, δ}where δ = 1+

√
−3

2 , the root forX2+X+1 = 0.
According to [12, 5], the ring of maximal order defines the ring of first fast endomorphism on E0,
Φ, where Φ(P ) = (λx, y) and λ satisfies λ2 + λ+ 1 ≡ 0 (mod p).

Since the ISDmethod requires three endomorphisms, where the first endomorphism is similar
with the endomorphism used by [12], the other two fast endomorphisms were constructed based
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on the concept of isogeny so that this method can be employed on E0 [5]. The following theorem
defines the mapping of the other two fast endomorphisms on E0 as given by [5].

Theorem 4.1. LetE0(Fp) : y
2 = x3+B with p ≡ 1 (mod 3). There exist pointsQ and P inE0(Fp) with

order 3 and prime order n, respectively. Define the polynomial for the second and third endomorphisms as
Φ2

1 +3 = 0 and Φ2
2− 3Φ2 +3 = 0, respectively. Then, the scalar multiplication acted on point P based on

the second and third endomorphisms’ mappings are defined by

Φi (x, y) =

(
x3 + 4B

ϵi2x2
, y

[
x3 − 8B

ϵ3ix
3

])
,

for i = 1, 2, where Φ1 ≡ ϵi+2 (mod p) and Φ2 ≡ ϵi+4 (mod p).

All curves that are defined over the quadratic field which isK = Q(
√
−3) belong to this family

where they shared the same algebraic properties. One of the curves which belongs to this family
that is commonly used as stated by Standards for Efficient Cryptography 2 (SEC 2) is a Koblitz
curve with 192-bit prime field, which is also known as Secp192k1 which is defined by

E : y2 = x3 + 3,

with the certain parameters [6].

5 Implementation of ISDMethod on Secp192k1

This paper implemented the fast endomorphisms as described in Section 4 on Secp192k1 as
presented in Algorithm 10. It closely resembles to Algorithm 9. The sets {ϵ1, ϵ2}, {ϵ3, ϵ4} and
{ϵ5, ϵ6} are corresponding to the solution modulo p of the first endomorphism, second endomor-
phism and third endomorphism respectively.

Algorithm 10 : Scalar multiplication using ISD method with fast endomorphisms on Secp192k1.
Require:

E(Fp) : y
2 = x3 + 3, p = 0xfffffffffffffffffffffffffffffffffffffffeffffee37,

n = 0xfffffffffffffffffffffffe26f2fc170f69466a74defd8d,
P = (0xdb4ff10ec057e9ae26b07d0280b7f4341da5d1b1eae06c7d, 0x9b2f2f6d9c5628a7844163
d015be86344082aa88d95e2f9d) in Secp192k1, a set of λ = {λ1,1, λ1,2, λ2,1, λ2,2},
a set of k = {k1, k2}, a set of ϵ = {ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6}, λchoice, Φ1 (P ) =

(
x3+12
ϵ3,42x2 , y

[
x3−24
ϵ33,4x

3

])
,

Φ2 (P ) =
(

x3+12
ϵ5,62x2 , y

[
x3−24
ϵ35,6x

3

])
.

Ensure: Q = kP .
1 : Use Algorithm 8 to find k1,1, k1,2, k2,1, k2,2.
2 : Use Theorem 4.1 to compute Φ(P ).
2.1 : If λchoice = λ1,1 and λ2,1, then: compute Φ1(P ) using ϵ3 and Φ2(P ) using ϵ6.
2.2 : Else If λchoice = λ1,1 and λ2,2, then: compute Φ1(P ) using ϵ3 and Φ2(P ) using ϵ5.
2.3 : Else If λchoice = λ1,2 and λ2,1, then: compute Φ1(P ) using ϵ4 and Φ2(P ) using ϵ6.
2.4 : Else If λchoice = λ1,2 and λ2,2, then: compute Φ1(P ) using ϵ4 and Φ2(P ) using ϵ5.
3 : Use Algorithm 1 to compute scalar multiplication and additions.
3.1 : Addition1← k1,1P + k1,2Φ1(P ).
3.2 : Addition2← Addition1+ k2,1P .
3.3 : Addition3← Addition2+ k2,2Φ2(P ).
4 : Return: (Addition3).
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Similarly, in Algorithm 10, Step 3 can be replaced with the most efficient algorithm discussed
in Section 2. The comparison on efficiency between the ISD method with fast endomorphism and
with other approaches is conducted in Section 6 for both smaller and larger fields.

6 Analysis of the Results

We computed the computational time for the scalar multiplication defined in each fast endor-
morphism to ensure that our fast endomorphism can accelerate scalar multiplication. We also
compared the computational time efficiency among various approaches as stated in Section 2 for
the scalarmultiplications defined by the fast endormophisms. Then, the computational time taken
to perform scalar multiplication by the ISD method on Secp192k1 with various approaches are
computed and compared to evaluate the efficiency of fast endomorphisms in the ISDmethod. All
computations were done by using Mathematica software version 12.1.1 on an AMD Ryzen 5730U
processor and 8 gigabytes of LPDDR4x RAM. The running time taken for each scalar multiplica-
tion defined by all three endomorphisms as stated in Section 4 are shown in the Table 1.

Most notably, point multiplication using window-w NAF-representation with w = 3 and
w = 4 are able to reduce the computational cost on Secp192k1 for certain scalar multiplications as
compared to other approaches. The symbol % in Table 1 represents the percentage of speed-up
achieved when comparing the shortest execution time obtained from other approaches to the fast
endomorphism method for scalar multiplication mP .

From Table 1, it is clear that the existence of fast endomorphisms accelerated the computation
for certain scalar multiplications on Secp192k1, by more than 99%. This is due to the number
of operations count using the encoding approach escalated for a bigger prime field. However,
the number of operations count using fast endomorphism remains unchanged even for a bigger
prime field. Since fast endomorphisms require less time complexity than other approaches, this
will result in faster computation if fast endomorphisms are applied on any scalar decomposition
method as compared to computation without fast endomorphisms on Secp192k1.

Assume that we want to compute 365164723589214823746213573856238746P . If the ISD
method had been used, we have

k1,1 = −25757995243109019190459597838,
k1,2 = 29389095186619704140758527421,

k2,1 = 6277101735386680763835059093624676943848401272189252500094,

k2,2 = −137715412966941099290481721943,

given that

Φ1(P ) = 3260202861401843664988870687845839771682143121980490210346P,

Φ2(P ) = 4768652298394262214412330055453552021819633518590667861213P.
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Subsequently, a comparative analysis of 365164723589214823746213573856238746P using the
ISD method with different approaches is presented in Table 2.

Table 2: Time taken for point multiplication of mP in large fields using ISD method with various approaches.

ISD method with approaches Width size Execution time(s)
Algorithm 1 - 0.094151
Algorithm 3 - 0.093909
Algorithm 5 w = 3 0.093010

w = 4 0.093051
w = 5 0.098173

Algorithm 6 w = 3 0.109745
w = 4 0.108181
w = 5 0.109780

Fast endomorphism - 0.079369

According to Table 2, the implementation of the fast endomorphism with the ISD method also
effectively decreases the computational time. It is worth noting that the second shortest time
recorded is 0.093010 seconds, achieved by Algorithm 5 with a width of 3. This leads to an ap-
proximate 15% acceleration in computational time.

7 Discussions

The original ISD method consumes more computational time due to its inefficient endomor-
phisms especially when dealing with large prime fields. One way to reduce the computational
time in the ISD method is by using fast endomorphisms. The existence of all three fast endomor-
phisms that are defined overK = Q(

√
−3) accelerates the computation via the ISD method on E0

on larger prime fields. The comparison for running time between the ISD method with encod-
ing approaches and with fast endomorphism for certain scalar multiplication as shown in Table 2
support our results. Even though the overall running time via the ISD method remains high due
to its multilayer decompositions, the existence of fast endomorphisms is able to reduce this cost
and hence makes the ISD method with fast endomorphisms more efficient than the ISD method
without any fast endomorphisms.

8 Conclusions

The ISD method was proposed to enhance the computational speed and reduce the computa-
tional cost of elliptic scalar multiplication when the GLV condition is not satisfied. However, since
this method employs endomorphisms which are inefficiently computable, the running time re-
mains to be high especially on larger prime field. The implementation of fast endomorphisms on
192-bits Koblitz curve shows that the presence of fast endomorphisms reduce the computational
time taken to compute the scalar multiplications defined by these endomorphism. By employ-
ing fast endomorphisms on one of the recommended curves in E0 which is Secp192k1, the ISD
methodwith fast endomorphisms exhibit themost significant acceleration in scalar multiplication
among the various approaches.
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